Complete <i>q</i>th-Moment Convergence of Moving Average Process for <i>m</i>-WOD Random Variable

نویسندگان

چکیده

In this paper, we obtained complete q th-moment convergence of the moving average processes, which is generated by m -WOD random variables. The results in article improve and extend process. variables include WOD, -NA, -NOD -END variables, so paper also promote corresponding ones -NOD, .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further research on complete moment convergence for moving average process of a class of random variables

In this article, the complete moment convergence for the partial sum of moving average processes [Formula: see text] is established under some mild conditions, where [Formula: see text] is a doubly infinite sequence of random variables satisfying the Rosenthal type maximal inequality and [Formula: see text] is an absolutely summable sequence of real numbers. These conclusions promote and improv...

متن کامل

On the Precise Asymptotics in Complete Moment Convergence of Moving Average Processes under NA Random Variables

Let {ε i | − ∞ < i < ∞} be a sequence of identically distributed negatively associated random variables and {a i | − ∞ < i < ∞} a sequence of real numbers with

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wuhan University Journal of Natural Sciences

سال: 2022

ISSN: ['1007-1202', '1993-4998']

DOI: https://doi.org/10.1051/wujns/2022275396